
Abstract—One of the main obstacles to the adoption of
Ethernet technology in carrier-grade metropolitan and wide-area
networks is the large recovery latency, in case of fault, due to
spanning tree reconfiguration. In this paper we present a
technique called Bounded Latency Spanning Tree
Reconfiguration (BLSTR), which guarantees worst case recovery
latency by accelerating bridge reconfiguration and by
eliminating the bandwidth-consuming station discovery phase
that follows the bridge forwarding table invalidation due to
reconfiguration. BLSTR does not replace the spanning tree
reconfiguration protocol (RSTP/MSTP), which remains in
control of network reconfiguration, whereas it operates in
parallel with it. More specifically BLSTR maintains a copy of the
bridge configurations and of the bridge forwarding tables
deriving from all the possible single faults, so that at the
occurrence of a fault BLSTR is able to activate the appropriate
configurations and to load the appropriate forwarding tables.

Index Terms—Ethernet, Carrier Ethernet, Wide Area
Network, Metropolitan Area Network, Spanning Tree, RSTP,
Bounded latency

I. INTRODUCTION
While in the past Ethernet technology was prevalently adopted
in the local domain and in enterprise networks, recently the
bandwidth growth deriving from the diffusion of optical
transmission has made it convenient to adopt Ethernet
technology also in the metropolitan/wide-area domain in and
carrier networks. The adoption of Ethernet technology in
carrier networks is mainly based on the IEEE 802.1Q standard
[3], which introduces the VLAN concept to segregate the
traffic related to different services in the user network, on the
IEEE 802.1ad standard (Provider Bridge) [4], which
introduces the stacked VLAN concept to segregate the traffic
related to different customers in the service provider network,
and on the IEEE 802.1ah standard (Provider Backbone
Bridge) [5], which introduces a separate network associated to
a private addressing space to interconnect different Provider
Bridge networks. In Provider Bridge technology, which is of
particular interest in this paper, the service provider bridges
can be classified in two categories, namely that of Provider
Edge Bridges (PEB), connected to customer equipment, and

that of Provider Core Bridges (PCB), internal to the service
provider network (see Fig. 3).

In general terms the Ethernet working model can be
summarized by three distinctive features, namely spanning
tree, address learning, and flood on unknown. The spanning
tree feature denotes the fact that the Ethernet frames are
forwarded through an acyclic overlay topology, called active
topology, which spans all the bridges, i.e., a spanning tree.
Ethernet uses the Rapid Spanning Tree Protocol (RSTP) [1] to
establish such an overlay topology and the Multiple Spanning
Tree Protocol (MSTP) [2], an extension of RSTP, to establish
more than one spanning tree instance on the same physical
topology to improve robustness and link utilization. The
address learning feature denotes the fact that the bridge
forwarding tables are updated at the reception of each frame
by associating the frame source MAC address to the frame
arrival port, i.e., by learning the route to a station from the
traffic generated by that station. The flood on unknown feature
denotes the fact that when a bridge receives a frame directed
to an unknown MAC address the bridge floods the frame on
all its active ports. Both address learning and flood on
unknown require the presence of a spanning tree. In particular
address learning requires the existence of single bidirectional
paths between bridge pairs whereas flood on unknown is not
compatible with the presence of cycles which would cause
endless forwarding loops.

Being a distance-vector protocol [1], RSTP can not provide
bounded reconfiguration time in case of faults and more in
general in case of network modifications that worsen the
network paths because of the well known count-to-infinity
phenomenon [13]. In particular it was shown that the RSTP
convergence may end up lasting several seconds or even tens
of seconds [15]. While such a large reconfiguration latency
can be acceptable in enterprise networks, on the contrary it is
not compatible with carrier grade services, for which the worst
acceptable reconfiguration latency is of an order of magnitude
of the tens of milliseconds [7].

Several approaches to reduce Ethernet reconfiguration
latency were proposed in the past. A first approach is to
devise special techniques for specific physical topologies of
large diffusion, such as ring [40][41]. A second approach is to
exploit different MSTP instances to perform rapid rerouting of
traffic after a fault [31][34]. A third approach is to abandon
the Ethernet working model and to replace the spanning tree
approach with a link state protocol [6][43]. A detailed
discussion is provided in Section VI.

Bounded Latency Spanning
 Tree Reconfiguration

Martino Fornasa, Michele Stecca, Massimo Maresca, Pierpaolo Baglietto

Technical Report
Computer Platform Research Center (CIPI) – University of Genova, University of Padova, Italy

October 25, 2011.
Authors are with the Computer Platform Research Center, University of

Genova, University of Padova - Italy (e-mail: {m.fornasa, m.stecca,
m.maresca, p.baglietto} @cipi.unige.it).

 2

The Bounded Latency Spanning Tree Reconfiguration
(BLSTR) technique [8] proposed in this paper guarantees
bounded latency of spanning tree reconfiguration after a
bridge fault or after a link fault. BLSTR does not replace the
spanning tree reconfiguration protocol (RSTP/MSTP), which
remains in control of network reconfiguration, whereas it
operates in parallel with it. More specifically BLSTR
maintains a copy of the bridge configurations and of the
bridge forwarding tables deriving from all the possible single
resource faults, quickly propagates fault notifications at their
occurrence, deactivates bridge forwarding for a limited
amount of time that linearly depends on bridge time
synchronization accuracy, activates the appropriate
configurations and forwarding tables and activates forwarding
again. As a consequence BLSTR not only provides fast
reconfiguration but it also eliminates the effect of the
bandwidth-consuming flooding needed to fill out the
forwarding tables after reconfiguration.

BLSTR follows the direction proposed in [36][37] for the
routing domain, according to which routing decisions are
taken in a centralized way and then distributed to the network
nodes. In the same way as [38] proposes to relay fault
information on dedicated packets to spread fault information
on a link-state network, BLSTR is based on distributed active
fault notification and centralized alternative configuration
computation. However, the spanning-tree distinctive features
(tree overlay topology, distance-vector approach, root bridge
concept, address learning, absence of time-to-live field in
frame header) require a dedicated approach.

BLSTR exhibits the following characteristics:

• It is fully compatible with RSTP/MSTP, and as such it
can be included in current generation Ethernet bridges as
an additional software component.

• Its time critical operation is fully distributed, i.e., each
bridge reconfigures itself in case of network faults, and as
such it exhibits the same robustness as RSTP/MSTP.

• It guarantees a bounded reconfiguration latency in the
order of magnitude of tens of milliseconds on large
geographical networks after a bridge fault or after a link
fault.

• It leverages the hardware cost reduction, as it requires at
most an inexpensive upgrade of bridge memory.

The BLSTR approach is specifically targeted at Provider
Bridge networks based on the IEEE 802.1ad standard. Such
networks, which are adopted by carriers to provide services in
the metropolitan/wide-area domain, take substantial benefit
from the bounded reconfiguration latency provided by
BLSTR.

The main contributions of the paper are summarized below:
• The first contribution is the idea of precomputing the

bridge port configurations and the forwarding tables that
would derive from all possible single resource faults and
of keeping such configurations and tables in the bridge
memories (Section II). While it might be objected that the
implementation of such a strategy would require a
significant amount of memory, the objective of enabling

the deployment of Ethernet technology in carrier-grade
telecommunication services by supporting bounded
reconfiguration latency is so relevant to justify a memory
upgrade in bridges, in particular considering the low cost
of memory.

• The second contribution is the idea to have BLSTR work
in parallel with RSTP (Section II). The coordination
between BLSTR and RSTP is controlled in such a way
that after a bridge fault or after a single link fault it is
BLSTR that takes care of bridge reconfiguration, whereas
in case of multiple simultaneous independent faults (the
probability of which is very low), it is RSTP that takes
care of bridge reconfiguration in the same way as it would
do in absence of BLSTR.

• The third contribution is a technique that supports the
notification of single link faults and the identification of
bridge faults within a bounded time (Section II).

• The fourth contribution is a technique for synchronizing
bridge reconfiguration after fault detection to guarantee
the absence of temporary forwarding loops (Section II,
Section III). The technique ensures that all the bridges to
be reconfigured first switch off forwarding, then activate
the new configurations, and finally switch on again
forwarding at a time at which all the bridges to be
reconfigured have already switched off forwarding, thus
avoiding forwarding loops.

• The fifth contribution is a set of algorithms aimed at
calculating the spanning tree configuration generated by
RSTP in a centralized way (Section IV).

• The sixth contribution is a technique to compute the worst
case latency of BLSTR spanning tree reconfiguration.
(Section V).

II. TECHNIQUE DESCRIPTION

A. Architecture and Operating Principles
BLSTR requires the cooperation between a central platform

and a distributed platform.
The BLSTR Central Platform (BLSTR-CP) is responsible

for offline operations and does not intervene at the moment at
which a fault is detected. On the contrary it maintains an up-
to-date image of the network, which includes the network
topology, the topologies of the spanning tree instances
(assuming that more than one spanning tree instance is in
operation as provided by MSTP), the association of the end
stations to the Provider Edge Bridge ports, and the alternative
bridge configuration for every possible single resource fault.
The alternative configurations correspond to those which
would derive from RSTP. During normal operations, the
alternative bridge configurations are kept up to date by the
BLSTR-CP and forwarded to all bridges to be used to
reconfigure the bridges in case of fault.

The BLSTR Distributed Platform (BLSTR-DP) consists of
components hosted in the bridges and takes care of immediate
reaction to faults. In particular a bridge, upon fault detection
on one of its ports, injects a Fault Notification message into
the network. A link fault causes two notification messages

 3

whereas a bridge fault causes one message from each bridge
neighbour. Such messages reach all the other bridges in a
worst-case time proportional to the network delay diameter
(i.e., the maximum time needed by a fault notification
message to travel between any pair of bridges in the network).
Upon reception of such a message each bridge retrieves the
configuration that it is supposed to assume in the network
topology deriving from the detected fault and reconfigures
itself immediately. Later on, RSTP converges to the same
results.

From a software point of view BLSTR is carried out by the
joint action of a set of components (described in Section II.A)
coordinated by means of a control strategy (described in
Section II.B).

B. Components
BLSTR is carried out by the following seven components

(see Fig. 1, that shows the components hosted by the BLSTR-
CP, and Fig. 2, that shows the components hosted by the
BLSTR-DP):

• Time Synchronization component (TS);
• Network Image Management component (NIM);
• Alternative Network Configuration Management

component (ANCM);
• Bridge Alternative Network Configuration Management

component (B-ANCM);
• Fault Notification Distribution component (FND);
• Fault Identification component (FI).
• BLSTR Control component (BC).

Fig. 1. BLSTR components hosted in the BLSTR-CP.

BLSTR Distributed Platform

B-ANCM
Bridge Alternative Network

Configuration Mgmt

FND
Fault Notification

Distribution

B-AST (Bridge Alternative Spanning Tree instance topology)

B-AFT (Bridge Alternative Fwd Tables)

FI
Fault Identification

BC
BLSTR Control

Fault Notification repository

TS
Time Synchronization

Real-time clock

Fig. 2. BLSTR components hosted in the BLSTR-DP.

Time Synchronization component (TS)

The Time Synchronization component, hosted in the
BLSTR-DP, aims at keeping the bridge clocks aligned. It may
be based on a global time source or on the Network Time
Protocol (NTP) [42] as well as on other synchronization
protocols and must support worst-case accuracy, i.e., the
guarantee that the time-of-the-day of any bridge differs from
the actual time-of-the-day by at most sT .

Network Image Management component (NIM)

The Network Image Management component, hosted in the
BLSTR-CP, collects and maintains an image of the network,
which includes the following information elements:
• The Network Topology, for example in the form of an

adjacency matrix called]][[BB NNNT , assuming that

BN is the number of bridges in the provider network.
• The Spanning Tree Instance Topologies, for example in

the form of an array of SN Port Status Arrays called

]][][[SPB NNNST , each corresponding to a Spanning

Tree Instance, where SN is the number of the active

Spanning Tree Instances and PN denotes the maximum
number of ports in a bridge.

• The association between the Network Endpoints, i.e., the
MAC addresses external with respect to the network, and
the Provider Edge Bridges through which the Network
Endpoints are reachable (See Fig. 3), for example in the
form of an array of X elements called][XNE , where X
is the number of Network Endpoints (which is variable)
and where each element includes the Network Endpoint
MAC Address, the Provider Edge Bridge Id, the Provider
Edge Customer Port, and the Provider VLAN Id.

The maintenance of the Network Image is supported by
appropriate data exchanges (periodic and/or event-driven)
between the NIM and the bridges.

PEB #2

PEB #1

PEB #3

PCB

PCB

00:01:01:01:01

Service Provider Network

Customer network

00:01:01:01:02

00:01:01:01:03

BLSTR-CP 1 2

PEB #1 1 VLAN #23

00:01:01:01:02 PEB #1 1 VLAN #21

00:01:01:01:03 PEB #1 1 VLAN #23

NE
MAC PEB id port VLAN id

00:01:01:01:01

Customer network

00:01:01:01:05

00:01:01:01:06

00:01:01:01:05 PEB #1 2 VLAN #41

00:01:01:01:06 PEB #1 2 VLAN #41
...

Fig. 3. Network Endpoint table (NE) for a sample Provider Bridges network
(PEB: Provider Edge Bridge, PCB: Provider Core Bridge).

 4

Alternative Network Configuration Management component
(ANCM)

The Alternative Network Configuration Management
component, hosted in the BLSTR-CP, computes and maintains
the alternative network configurations associated to all
possible resource faults, where a resource is either a bridge or
a link. For all the LB NN + resources that may fail (where

BN is the number of bridges in the network and LN is the
number of links in the network), the ANCM component
computes and maintains the following information elements:

• (LB NN +) Alternative Network Topologies, for example
in the form of an array of LB NN + adjacency matrices
called]][][[LBBB NNNNANT + .

• (LB NN +) Alternative Spanning Tree Instance
Topologies, for example in the form of an array of
Spanning Tree Instance Topologies called

]][][][[LBSPB NNNNNAST + .

•)(LBV NNN +⋅ Alternative Bridge VLAN Forwarding
Tables, for example in the form of an array called

]][][][[LBVB NNXNNAFT + of Forwarding Table

entries (MAC, Port Number), where VN indicates the
number of existing VLANs and X indicates the
Forwarding Table length.

The algorithms used to compute the alternative network
configurations are described in Sections IV.A and IV.B.

Bridge Alternative Network Configuration Management
component (B-ANCM)

The Bridge Alternative Network Configuration
Management component (B-ANCM), hosted in the BLSTR-
DP, keeps the bridge information base aligned with that of the
ANCM. In particular the B-ANCM periodically downloads its
portion of AST and AFT tables from the ANCM.

More specifically the B-ANCM maintains the following
information base in each bridge:

• The (LB NN +) bridge Alternative Bridge Port
Configurations, for example in the form of an array of
port states called]][][[LBSP NNNNASTB +− .

• The)(LBV NNN +⋅ bridge Alternative Bridge VLAN
Forwarding Tables, for example in the form of an array
called]][][[LBV NNXNAFTB +− of Forwarding

Table entries, where VN indicates the number of existing
VLANs and X indicates the Forwarding Table length.

Fault Notification Distribution component (FND)

The Fault Notification Distribution component, hosted in
the BLSTR-DP, aims at supporting the immediate diffusion of
Fault Notifications over the network. The diffusion must be
completed within a time limit called Worst Case Fault

Notification Latency (WCFNL), as we assume that after a
fault the network continues to be connected. A technique to
compute WCFNL is presented in Section V.

FND relies on a fault notification repository array, which
contains a copy of the fault notification messages received by
the bridge during a reconfiguration period.

The behaviour of FND is described in Sections II.C and III.

Fault Identification component (FI)

The Fault Identification component, hosted in the BLSTR-
DP, identifies the failing resource by combining the Fault
Notification messages stored in the repository. More
specifically, the fault of a link is detected by combining the
notifications generated by the bridges located at the link
endpoints, whereas the fault of a bridge is detected by
combining the notifications generated by all the bridges
connected to the failing bridge, as described in Section IV.C.
In case of a single resource fault, the FI supports the selection
of the appropriate alternative configuration in the B-ANCM.
On the other hand, if the FI component in bridge receives a set
of fault notification messages that are not compatible with a
single resource fault (for example, originated by multiple
faults), the bridge must revert to RSTP.

BLSTR Control component (BC)

The BLSTR Control component, hosted in the BLSTR-DP,
coordinates BLSTR and RSTP/MSTP to activate the
appropriate bridge configuration after a fault.

First of all it must be pointed out that RSTP/MSTP is
permanently running on the network, independent of the
action of BLSTR. When it is BLSTR instead of RSTP/MSTP
that controls the bridge configuration RSTP/MSTP keeps on
running in background on a copy of the bridge configuration
stored in the bridge memory.

BC moves through a series of states as shown in Fig. 4.
During regular network operation BC is in a state called
Normal Operation (NO), in which the bridge is ready to
receive Fault Notification messages. Upon reception of a Fault
Notification message, BC moves to a state called Fault
Notification Collection (FNC), in which the bridge collects
Fault Notification messages. At the expiration of a timer that
guarantees that all the Fault Notification messages originating
from the same fault have reached all the bridges BC processes
the Fault Notification messages collected to recognize the
fault and moves to a state called Single Fault (SF) during
which forwarding is switched while the new bridge
configuration is loaded but not yet activated. At the expiration
of a timer that guarantees that all bridges have switched off
forwarding BC activates the new configuration and moves to a
state called Reconfigured (RC), in which the bridge
configuration is maintained at least for a time equal to the
longest time interval needed by RSTP to converge.

The aforementioned state evolution changes upon reception
of a Fault Notification message that signals the occurrence of
a multiple fault, i.e., of a Fault Notification message that does
not refer to the same fault to which the Fault Notification

 5

messages already received refer. In such a case BC evolves to
a state in which BLSTR is excluded whereas RSTP/MSTP is
given the control of bridge reconfiguration. The multiple fault
case is discussed in Section III.

C. Control Strategy
In the following we describe the BLSTR control strategy.

Normal Operation (NO)

During regular network operation the bridges are in the
state NO, and NIM, ANCM and B-ANCM interact with each
other to maintain the network information base up to date and
aligned. It is worth noticing that such interactions are
triggered by network topology changes, which are supposed to
happen rarely. In particular NIM maintains the network
image, ANCM maintains the alternative network images and
calculates the alternative configurations, and B-ANCM
maintains the bridge alternative configurations aligned with
ANCM. In addition TS maintains the bridge clocks aligned
within a threshold sT from the current time.

Fault Notification Collection (FNC)

The BLSTR fault reaction is based on a rapid distribution
of fault information over the network carried out by the FND
component.

Let iB be a bridge in state NO (more precisely, the BC of
which is in state NO) and let such a bridge detect a fault at
time ft on port jP (connected to remote bridge kB)1. At fault

detection the bridge moves to state FNC, and FND performs
the following actions:
• it prepares a Fault Notification message that includes the

current time-of-the-day timestamp (*
ft), the bridge Id

(iB), the port ID (jP) and the remote bridge ID (kB);

• it enqueues such a message on high priority egress queues
on all ports; as such queues are assigned maximum
priority, the Fault Notification message experiences a
predictable (and small) delay (see Section V for a
quantitative analysis);

• it stores the Fault Notification message in the Fault
Notification repository.

Let instead jB be a bridge in state NO or in state FNC that

receives a Fault notification message. The bridge moves to
state FNC (if necessary) and the message is processed by
FND, which performs the following actions:
• it sets (or updates) the *

OFFt timer, at the expiration of
which, the bridge moves to state SF;

• it compares the incoming message with the ones
contained in the Fault Notification repository, which
includes all the Fault Notification messages received
since the transition to state FNC;

1 A port failure can be caused by a failure on the bridge, by a link failure

(e.g. a fiber cut) or by a remote-bridge failure.

• if the comparison gives a positive result then:
o it discards the repeated Fault Notification

message,
 otherwise:

o it stores the Fault Notification message in the
Fault Notification repository;

o it enqueues the Fault Notification message on
high priority egress queues on all bridge ports
but the port on which the message was received.

Fig. 4. BLSTR control strategy state transition diagram.

Because of the limited time accuracy, the fault detection

timestamp value *
ft included in the Fault Notification message

differs from the actual fault detection time ft . More

specifically

 sffsf TttTt +≤≤ ** - (1)

The Fault Notification message reaches all the bridges at
actual time rt :

 WCFNLtt fr += (2)

This is the time at which bridges can move to state SF to
perform reconfiguration in a synchronized manner, as it can
be assumed that all Fault Notification messages generated by
the fault have reached all the bridges. Let iOFFt , be the actual

time at which bridge i starts reconfiguration: the following
inequality must hold for all bridges:

 riOFF tt ≥, i∀ (3)

By combining (1) and (2), (3) we obtain:

 6

 WCFNLTtt sfiOFF ++≥ *
, (4)

In other words, when entering state FNC, BC must configure a
timer to expire at the appropriate time to start reconfiguration.
In order to account for the receiving bridge imperfect timer
alignment the bridge must set the timer to expire at local time:

 WCFNLTtt sfOFF ++= 2** (5)

where *
ft is extracted from the message whereas WCFNL and

sT are extracted from the bridge configuration, and waits for
its expiration.

While in state FNC, FND keeps on processing incoming
Fault Notification messages and on updating the fault
notification repository accordingly. Additionally, if necessary,
that is if the *

ft value included in the message is older than the

oldest *
ft value received so far, the BC reconfigures the timer

to expire at WCFNLTtt sf ++= 2oldest **
OFF .

At local time *
OFFt , when the timer expires, the bridge

moves to state SF in order to undertake the reconfiguration of
both the Spanning Tree Instances and the VLANs influenced
by the fault.

Single Fault (SF)

Because of the limited accuracy of timer synchronization
the bridges enter state SF at different times. In order to avoid
inconsistencies between the bridges still configured according
to the network topology preceding the fault and the bridges
configured according to the new network topology resulting
from network reconfiguration, BLSTR is organized in such a
way that for a period of time the network as a whole performs
neither MAC Address learning nor frame forwarding.

So, when entering state SF, BC undertakes the following
actions:
• It detaches the RSTP-driven reconfiguration process from

actual bridge reconfiguration. In particular:
 it redirects the port state updates issued by the RSTP

over port state copies;
 it suspends address Learning and Forwarding for the

VLANs assigned to spanning trees subject to
reconfiguration.

• It loads the configuration corresponding to the detected
fault by performing the following actions:

 it sets a timer (*
ONt), at the expiration of which the

new configuration is supposed to become active;
 it replaces the obsolete Spanning Tree Instances

with the new Spanning Tree Instances retrieved
from the B-AST using the failing resource id as a
key;

 it replaces the Forwarding Tables of the VLANs
which are influenced by the fault detected with the
new Forwarding Tables extracted from the B-AFT
using the failing resource id as a key.

At the expiration of timer *
ONt BC moves to state RC in

order to activate the BLSTR configuration.
We determine the value of *

ONt as follows. We remind that

all bridges know *
ft and have calculated the same *

OFFt .

Because of the limited accuracy of clock synchronization, the
actual time value iONt , at which forwarding is resumed for

bridge i can be written as:

)(**
,, OFFONiOFFiON tttt −+= (6)

To guarantee that the last bridge stops forwarding before
the first bridge resumes forwarding, we impose that

 j i, ∀ ,tt i,OFFj,ON ≥ (7)

Applying (6) and considering that the maximum time
difference between two bridges is sT2 we obtain:

 sOFFON Ttt 2** ≥− (8)

So, the value of *
ONt timer has to be set to sOFF Tt 2* +

Reconfigured (RC)

Entering state RC the bridge resumes learning and
forwarding for the VLANs assigned to the spanning trees
subject to reconfiguration — notice that the port
configuration is the one (derived from BLSTR) that has been
set in state SF; such a port configuration remains unaltered in
state RC.

After an appropriate time interval the bridges reset their
state by reverting to state NO. Such an interval must be long
enough to accommodate the worst-case RSTP convergence
time and the time needed by BLSTR to recalculate and
distribute the alternative configurations for the topology
resulting from the fault. The reset process is initiated by the
BLSTR-CP, which sends a reset command to all bridges in the
network.

III. MULTIPLE SIMULTANEOUS FAULTS
The BLSTR control strategy described in Section II does

not take into account the possibility of multiple simultaneous
faults, i.e. the faults of multiple bridges or of multiple links
that happen in a short time interval. In particular, we consider
two successive faults as multiple simultaneous faults if the
second fault happens before all the bridges in the network
have reverted to Normal Operation after the first fault
processing.

As the bridge configuration remains blocked during state
RC, in the case of multiple simultaneous faults BLSTR may
end up worsening the RSTP reconfiguration performance.
Such a worsening can be accepted as the probability of such
an event is negligible. On the contrary, to handle multiple
simultaneous faults appropriately the BLSTR control strategy
needs to be improved as described below. The principle is to
identify the occurrence of multiple simultaneous faults as soon
as possible so as to have all bridges revert to RSTP. The

 7

implementation of such a principle requires the development
and the application of a technique that prevents from the
occurrence of a situation in which a subset of bridges are
controlled by RSTP (the ones that have identified the multiple
fault) while another subset of bridges are controlled by
BLSTR (the ones that have not identified multiple faults yet)
as such a situation leads to inconsistencies and possibly to
forwarding loops. The technique consists of having a bridge
that detects a multiple fault deactivate forwarding and learning
on its ports immediately. Forwarding and learning will be
reactivated only at a time at which it can be guaranteed that all
the bridges in the network have identified the multiple faults.

The state transition diagram is enriched with the following
states, as shown in Fig. 5:
• Multiple Fault (MF): accessed immediately upon

reception of a Fault Notification message that signals
multiple faults. When entering state MF the bridge
deactivates forwarding and learning.

• Reverting to RSTP (RV): accessed at a time at which it
can be guaranteed that all the bridges in the network have
left the RC state.

The bounded-latency behaviour of the fault distribution
mechanism assures that, although the Fault Notifications
messages may reach the bridges at different times and in
different order, it is not possible that two or more bridges
detect different single faults during the FNC phase. On the
other hand, it is possible that a subset of bridges detect a
single fault, while another subset detect a multiple fault,
leading to an inconsistency between bridges. In any case,
eventually a multiple fault notification reaches all the bridges
in the network causing their transition to MF and the resulting
deactivation of forwarding.

At transition from state MF to state RV port state control is
reverted to RSTP and forwarding and learning are enabled;
such a transition must take place only after all bridges in the
network have recognized the simultaneous multiple fault. This
can be obtained by setting a timer *

RSTPt configured as
follows:

 WCFNLTtt sf ++= 2 latest **
RSTP (10)

At the expiration of timer *
RSTPt the bridge performs the

transition to state RV. The timer is based on the latest (i.e., the
most recent) timestamp among all the Fault Notification
messages received because at time *

RSTPt it is certain that at
least the same set of messages that caused the multiple fault
identification in the given bridge have reached all the other
bridges in the network, assuring multiple fault identification
and transition to MF state on all bridges.

The process of reverting to normal operation from state RC
(in the single fault case) or from state RV (in the multiple fault
case) is initiated by the BLSTR-CP, that sends a reset
command to all bridges. However, a Fault Notification
message arriving during such a process might leave the

network in an inconsistent state, as the fault can reach bridges
that have already performed the transition (being in NO state)
and bridges that have not yet performed the transition.

So, suppose that the BLSTR-CP issues a reset command to
instruct bridges to revert to NO at time *

NOt . In order to avoid

inconsistencies we use the *
NOt value as a reference: if a bridge

receives a fault notification message having a timestamp that
is less than *

NOt , it cancels the reset command. If the cancel
operation takes place in a bridge that already performed
transition (being in state NO or FNC), the bridge immediately
moves to MF state. The above comparison is performed
between two timestamps, so its outcome is deterministic and
independent of bridge clock accuracy.

The multiple fault control strategy pseudocode is provided
in Fig. 6.

Normal Operation
(NO)

Fault notification
collection (FNC)

Local fault detection or
Incoming FND message

Single Fault (SF) Multiple Fault (MF)

t*OFF expiration &&
single fault identified

Reconfigured (RC)

t*RSTP
expiration

Reverting to RSTP
(RV)

Incoming FND
message

t*ON expiration

Multiple fault identified /
FND message generated before t*NO

FND message generated before t*NO

Incoming FND
message *

Incoming FND
message *

Incoming FND
message

Incoming FND
message

Fig. 5. BLSTR multiple resource fault control strategy (* A FND message
arriving to bridges in SF or RC denote always a multiple fault).

 8

Fig. 6. BLSTR multiple resource fault control strategy pseudocode. The
enable_BLSTR_configuration()function detaches the RSTP from
actual port configuration and configures ports according to the detected single
fault. The disable_BLSTR_configuration()function gives back port
control to RSTP. The propagate()function enques the fault notification
message on all the bridges ports but the port on which the message has been
received.

IV. ALGORITHMS
We present here the BLSTR algorithms. In order to

simplify the presentation, we discuss only the single spanning
tree/single VLAN case. The extension to the MSTP and
multiple VLANs is trivial.

A. Centralized spanning tree calculation and port role
assignment
RSTP is a distributed algorithm that calculates a

deterministic spanning tree over an arbitrary topology of
bridges. We discuss here an algorithm to calculate the same
spanning tree active topology resulting from the distributed
computation described in the 802.1D standard [1] in a

centralized way. Such an algorithm is used by the ANCM
component to compute centrally an Alternative Spanning Tree
that would become active as a consequence of a resource
fault, for all possible bridge or link faults.

In RSTP the spanning tree overlay topology is implemented
by means of per-port per-VLAN state variable called port
role. RSTP port roles are the following:
• Root: The root port is associated with the link toward the

root bridge and belongs to the active topology.
• Designated: The designated ports are associated with the

links toward the leaves of the spanning tree and belong to
the active topology.

• Alternate: The alternate ports indicate alternative paths to
the root bridge and do not belong to the active topology.

• Backup: Backup ports are present only with shared-media
LANs and do not belong to the active topology.

The algorithm processes an alternative network topology
(i.e., one element of ANT), which includes the 802.1D bridge
parameters (bridge id, ports id, port path costs) and produces
an alternative spanning tree instance expressed as a set of port
roles (AST) for every bridge in the network.

We consider a network composed only by point-to-point
links, whereas we do not consider the case of shared media
LANs which is obsolete. Under such a hypothesis, we model
the network as a weighted graph, in which the nodes
correspond to the bridges while the edges correspond to the
links. The link weight is the spanning tree port path cost
parameter, which by default is inversely proportional to the
link data rate. The only exception is represented by ‘parallel’
links, i.e. multiple links between the same pair of bridges2.

The algorithm, which calculates the same active topology as
the one obtained by the RSTP protocol, is based on the
Dijkstra algorithm, with some modifications needed to
emulate the RSTP behaviour. The algorithm consists of the
following steps:
• Step 1. Root bridge selection: Every 802.1D-bridge has a

unique bridge identifier (ID), which is composed by the
bridge address and a user-manageable priority field. The
root bridge is the bridge with the smallest ID on the
network. As bridge addresses are unique, the root bridge
selection is deterministic.

• Step 2. Shortest-path identification: The shortest path
from the root bridge to every other bridge is calculated.
This is known as single-source shortest path problem,
addressed by the well known Dijkstra algorithm. The
graph representing all such paths is a spanning tree.
However, as there may exist multiple minimum-cost
spanning trees based on the root bridge, the algorithm
must select the bridge with the smallest ID as the next
node to visit.

• Step 3. Port roles assignment: The last step consists of
assigning port roles. For each link that is part of the
spanning tree, the port on the highest-ID bridge takes the

2 In case of parallel links, i.e. multiple links between the same pair of bridges,
only one of the link will be part of the active topology. In such a case, the tie-
breaker is represented by the comparison of port IDs.

function
fault_notification_received_or_fault_detected(msg
) {
 if (msg is in the repository)
 return;
 store_in_repository(msg);
 propagate(msg);
 if (multiple fault identified || msg.ts <
t*NO) {
 state = MF;
 t*OFF = t*ON = t*NO = 0;
 disable_forwarding();
 disable_BLSTR_configuration();
 t*RSTP = newest_ts + WCFNL + 2 * Ts;
 } else if (state == NO) {
 oldest_ts = msg.ts;
 t*OFF = oldest_ts + WCFNL + 2 * Ts;
 state = FNC;
 } else if (state == FNC) {
 if (msg.ts < oldest_ts) {
 oldest_ts = msg.ts;
 t*OFF = oldest_ts + WCFNL + 2 * Ts;
 }
 }
}

function timer_expiration(timer) {
 if (timer == t*OFF) {
 state = SF;
 disable_forwarding();
 t*ON = t*OFF + 2 * Ts;
 enable_BLSTR_configuration();
 } else if (timer == t*ON) {
 state = RC;
 enable_forwarding();
 } else if (timer == t*RSTP) {
 state = RV;
 enable_forwarding();
 } else if (timer = t*NO) {
 state = NO;
 }
}

function reset_command_received(cmd) {
 t*NO = cmd.t*NO;
}

 9

designated role and the port on the lowest-ID bridge takes
the root role. For other links, the port on the highest-ID
bridge takes the designated role whereas the others take
the alternate role.

B. Bridge per-VLAN forwarding table calculation
We discuss here an algorithm to pre-calculate the

forwarding tables of each provider bridge. The pre-calculation
of the forwarding tables for all destinations aims at avoiding
the flooding deriving from forwarding table reset, thus greatly
reducing the bandwidth consumed after spanning tree
reconfiguration.

We suppose that the MAC addresses of the end-stations
attached to a customer edge port on a provider edge bridge are
locally learned and collected by such a bridge, and such
information is transmitted to the NIM and stored in Network
Endpoints data structure (NE). Every NE entry includes the
following fields:
- External Endpoint MAC Address (MAC),
- Provider Edge Bridge Id (peb_id),
- Provider Edge Customer Port (peb_port),
- Provider VLAN Id (VLAN_id).
As said before, for simplicity we do not consider here the
VLAN.

The input of each run of the algorithm is a NE entry, and
the output is a row of the forwarding table of each bridge in
the network. So, for every NE entry, the algorithm performs
the following steps:
• Step 1. Provider edge bridge entry: The algorithm creates

a forwarding table entry for the bridge identified by
peb_id. The new entry will be the following:

(MAC, peb_port)
• Step 2. Tree-climb: The algorithm starts considering the

bridge identified by peb_id, and climbs the tree up to
the root bridge, creating a forwarding table entry for each
traversed bridge. The tree is traversed entering by port
d_port and going out by the root port. The new entry
will be the following:

(MAC, d_port)
• Step 3. Other bridges: Finally, the algorithm sets a

forwarding table entry for all non-traversed bridge. Such
an entry will be the following:

(MAC, root_port)

It is certainly possible to improve the above algorithm,
considering that any algorithm delivering the same results can
be used. For example, it is possible to aggregate all MAC
addresses pertaining to the same spanning tree and to the same
port. However, the per-VLAN forwarding table calculation is
performed offline thus it doesn’t influence the online critical
path represented by the reconfiguration phase.

C. Fault identification criteria
During the Fault Recovery phase, every bridge receives a

number of fault notification messages, as more than one
bridge may detect the fault. Such messages are stored by the
FND in the Active Fault Notification repository. We discuss

now the fault identification criteria employed by the FI in
order to activate the correct alternative configuration in case
of single resource fault. There are two cases: the fault of a link
and the fault of a bridge.

The fault of a link is detected by the two link terminating
bridges, which generate a fault notification message. In Fig. 7,
for example, the link between bridge 222 and bridge 444 fails,
causing the generation of exactly two fault notification
messages, with Bi and Bk values reversed.

Fig. 7. Link fault. The link between bridge 222 and bridge 444 fails, causing
the generation of two fault notification messages.

The fault of a bridge is detected by all the neighbours of
that bridge as multiple faults. So, the fault of a bridge causes
the generation of at least one fault notification message. All
the fault notification messages have the same values in the Bk
field. In Fig. 8 bridge 222 fails. As a consequence, bridges
111, 333 and 444 will issue a fault notification message for
every link to bridge 222.

Fig. 8. Bridge fault. Bridge 222 fails, causing the generation four fault
notification messages.

V. PERFORMANCE ANALYSIS
In this section we analyze the BLSTR performance.
First we want to obtain the single-fault BLSTR worst-case

fault recovery time (MAXT), i.e. the time interval from fault
(ft) to last bridge reconfiguration (iONt .) in the event of a

single fault. MAXT can be written as:

 10

S

fSf

fSiOFFi

fiONiMAX

TWCFNL

tWCFNLTt

tTt

ttT

6

)5(max

)2(max

)(max

*
)4(

,

)8,6(

,

+=

−++=

−+=

−=

 (9)

The value sT depends on the clock synchronization
accuracy, while the value of WCFNL can be determined as
follows.

We consider a network composed of BN bridges linked by

LN links; the worst-case network diameter will be 1−BN .
The crossing time for the i-th bridge can be written as:

 i
Q

i
TX

i
R

i
P

i
CR ttttt +++= (11)

where:
• i

Pt is the propagation time on i-th link, which depends
on the geographical length of such a link.

• i
Rt is the processing time on i-th bridge, which depends

on hardware characteristics.
• i

TXt is the fault notification message transmission time.
Being FNs the size of such a message and ri the rate

of the output link, we have: iFN
i
TX rst = .

• i
Qt is the fault notification message queuing time. Due to

the higher priority of fault notification message, i
Qt is

the sum of the transmission time of a full-sized data
frame (iMTU rs) plus the transmission time of other
fault notification messages that could have been
already enqueued in the output queue. We distinguish
two cases:
o Link fault. In case of link fault, two fault

notification messages are generated by the two
bridges that terminate the link. So in the worst
case i

Qt in the worst case can be written as:

i

FN

i

MTUi
WCQ r

s
r

st +=,

o Bridge fault. In case of fault of a bridge having

PN ports, a fault notification message is
generated from each neighbour bridge. So, in the
worst case i

Qt can be written as:

()
i

FN
P

i

MTUi
WCQ r

sN
r

st 1, −+=

In case of link fault, WCFNL can be written as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++== ∑∑∑

i i

MTUFN

i

i
R

i
P

i

i
CR r

sstttWCFNL 2)(
)paths all(

max
)paths all(

max
 (12)

Analogously in case of bridge fault WCFNL can be written
as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
++== ∑∑∑

i i

MTUFNP

i

i
R

i
P

i

i
CR r

ssNtttWCFNL)(
)paths all(

max
)paths all(

max
 (13)

In most realistic environments we can safely assume that
the propagation and processing terms will dominate the
expression. For example, with a MTU of 1500 B and a link
capacity of 1 Gbps, we obtain a MTU/r value of 12 μs.
Applying such an assumption, we can express MAXT as:

 ∑ ++≈+=
i

i
R

i
PssMAX ttTWCFNLTT)(

)paths all(
max66 (14)

i.e. the maximum recovery time in case of single fault is the
sum of six times the clock synchronization accuracy plus the
network delay diameter, including in the network delay
diameter the notification message queueing time. To give an
example, if we assume a synchronization of ST =1 ms, BLSTR
can provide sub-50 ms recovery latency in a network with a
delay diameter up to 44 ms.

In the multiple fault case, the worst-case reconfiguration
time corresponds to the RSTP worst-case reconfiguration
time. However, the best-case reconfiguration time can be
higher than the RSTP one, being influenced by the reverting
to RSTP mechanism. In particular, bridges revert to RSTP at
local time WCFNLTtt sf ++= 2 latest **

RSTP , see Eq. (10).

So, taking into account the clock accuracy, we can say that all
bridges in the network will revert to RSTP by the time:

 WCFNLTtt sf ++= 4 last_faultRSTP (15)

i.e., in case of multiple faults, all bridges revert to RSTP at
worst four times the clock synchronization accuracy plus the
network delay diameter after the last fault.

VI. COMPARISON WITH PREVIOUS WORK
Surveys on the evolution of carrier-grade Ethernet

technologies can be found in [9] and [10]. Another survey,
focused on Ethernet resilience mechanisms is presented in
[11].

In the following we summarize some previously proposed
approaches to cope with Ethernet inefficiencies.

A. Non-arbitrary topologies
A number of approaches exist to handle RSTP slow re-

convergence that work in non-arbitrary topologies, such as
ring topologies (EAPS [40], ERPS [41]) and parallel link
aggregation [39], but they can not be used in arbitrary
topologies. On the contrary, BLSTR approach can be applied
to arbitrary topologies.

 11

B. Replacing spanning tree with a link state routing
protocol
A growing number of proposals in the literature

[14][17][18][19][20] and in standardization bodies [6][43]
suggest the elimination of spanning-tree based forwarding on
Ethernet networks by applying a link state routing protocol to
layer-2, i.e., by forwarding frames on shortest-path routes.

In [14] the authors propose to use a link state protocol for
forwarding and a distributed directory service providing
station location registration in order to eliminate the need of
flooding. Using such an approach, a new station connecting to
the network has to register itself to the directory service.

SEATTLE [20] proposes a distributed directory mechanism
composed by two parts: i) by running a link state protocol,
each bridge learns the shortest path to every other bridge in
the network, ii) an hash function is used to map end-station
information to a bridge. This approach promises to reduce the
amount of distributed information, achieving better scalability.

Recently two link state approaches have emerged: the
RBridges/TRILL, sponsored by IETF, and the Shortest Path
Bridging, sponsored by the IEEE.

RBridges [16] is a campus-level architecture based on a
link-state routing in which frames are encapsulated in an
additional layer-2 header containing a TTL counter in order to
avoid forwarding loop persistence; additionally, station
address learning is only performed locally and the obtained
information is distributed to the entire network along with
topology information. RBridges is specifically targeted to
campus-wide and datacenter networks. Such a proposal is
under active standard development in IETF Transparent
Interconnection of Lots of Links (TRILL) working group.

Shortest Path Bridging (802.1aq) [6] is an amendment to
the IEEE 802.1Q standard providing Ethernet frame
forwarding on shortest path by using the IS-IS protocol.

Approaches based on link state routing protocol require an
extensive modification of the Ethernet working model, based
on the elimination of the spanning tree approach in favour of
shortest-path routing approach, often involving a modification
of the Ethernet frame format based on the inclusion of
additional headers. On the contrary, BLSTR maintains the
spanning tree-based forwarding approach, and uses network
global topology information only to precalculate spanning tree
instances and forwarding tables.

C. MSTP-based recovery schemes
Several mechanisms have been proposed to exploit MSTP

to perform a global recovery scheme [23][24][25][27]
[30][31], i.e., to take advantage of the use of two disjoint
spanning tree paths (primary and backup) between each pair
of border bridges. Such paths are usually pre-computed
offline. When a resource (link or node) fails, the ingress node,
informed of the fault, switches the traffic on the backup path.
Such approaches usually rely on the assignment of a single
VLAN to an instance of MSTP, and use the VLAN IDs to
select the spanning tree instance. This prevents from using all
the available VLAN IDs to classify and segregate customer

traffic and poses scalability issues.

On the other hand, in a local recovery scheme
([26][28][29][31][32][33][34]), the fault of a resource triggers
the rerouting of the traffic on a pre-signalled backup path and
such a reroute is controlled by the upstream node with respect
to the detected fault. Local recover mechanisms exist in
SONET/SDH rings and have been proposed recently in MPLS
[35]. Some local recovery approaches ([26][28][29][31]) take
advantage of multiple spanning tree instances as backup paths
while some others propose different mechanisms: in [32] the
authors propose a local recovery mechanism that responds to
link fault by locally rerouting the traffic on a path pre-
computed via integer linear programming that is not on the
spanning tree; the same authors extended the concept to
simultaneous double link faults in [33].

The MSTP-based approaches presented above use a
multiple spanning tree approach, but they explicitly build
spanning tree instances without being compatible with
MSTP/RSTP protocols. Additionally, they use VLAN IDs to
select switching paths, preventing the use of VLAN tagging to
segregate traffic. On the contrary, BLSTR supports as many
spanning tree instances as MSTP, as it does not rely on
explicit path building, and does not exploit VLAN IDs.

D. Other approaches
In [15] the authors propose RSTP with Epochs, a RSTP

modification that adds a sequence number to RSTP BPDUs in
order to suppress stale topology information from the network
thus avoiding the count-to-infinity behaviour. Such an
approach aims at resolving a specific issue (count-to-infinity
behaviour) and does not address bounded latency or flooding
issues.

VII. CONCLUSION
The fact that RSTP is based on distance-vector leads to high

worst-case reconfiguration latency in Ethernet networks
because of the possibility of count-to-infinity. Such a high
reconfiguration latency is an obstacle to the deployment of
Ethernet technology in the carrier domain.

A possible radical approach is to replace entirely the
spanning tree scheme with a link-state algorithm, as advocated
for example by the IEEE 802.1aq standard.

Instead, in BLSTR we propose a hybrid approach: we
maintain a local-information-based spanning tree approach,
characterized by the robustness of a distributed system, but we
extend it through the addition of a mechanism to pre-compute
the bridge configurations that would result from all possible
single resource faults so as to be able to activate them
immediately upon fault detection. In this way, the
performance of network reconfiguration upon fault detection
depends on the speed of fault notification distribution and on
the accuracy of bridge clock synchronization. In particular, in
case of single resource fault the worst-case fault recovery
latency is the sum of the network delay diameter plus six
times the bridge clock synchronization accuracy, while in case

 12

of multiple faults the worst-case recovery time is the same of
RSTP protocol.

Additionally, the pre-calculation of the bridge forwarding
tables allows retaining the Ethernet plug-and-play distinctive
characteristics, namely the address learning capability and the
flood-on-unknown capability, while avoiding the bandwidth-
consuming flooding phase needed to re-populate the
forwarding tables after their reset.

In RSTP the impact of a fault on network operation
depends on the location of the fault in the spanning tree: a
fault close to the root bridge has a larger impact with respect
to a fault close to the leaves, as only the bridges contained in a
subtree rooted at the fault are subject to a root path cost
change [12]. A possible improvement to BLSTR will consist
of exploring the possibility of adapting dynamically the
WCFNL value to the network portion that is impacted by the
specific fault in order to improve the reconfiguration time in
the average case.

REFERENCES
[1] “IEEE 802.1D-2004. IEEE Standard for Local and Metropolitan Area

Networks - Media access control (MAC) Bridges (Incorporates IEEE
802.1t-2001 and IEEE 802.1w)”, Clause 17.

[2] “IEEE 802.1Q-2005 IEEE Standard for Local and Metropolitan Area
Networks - Virtual Bridged Local Area Networks Revision”, Clause 13.

[3] “IEEE 802.1Q-2005 IEEE Standard for Local and Metropolitan Area
Networks - Virtual Bridged Local Area Networks Revision”, Clause 6.

[4] “IEEE 802.1ad-2005 IEEE Standard for Local and Metropolitan Area
Networks - Virtual Bridged Local Area Networks - Revision -
Amendment 4: Provider Bridges”.

[5] “IEEE 802.1ah-2008 IEEE Standard for Local and Metropolitan Area
Networks - Virtual Bridged Local Area Networks - Amendment 7:
Provider Backbone Bridges”.

[6] “IEEE 802.1aq Standard for Local and Metropolitan Area Networks:
Virtual Bridged Local Area Networks - Amendment 8: Shortest Path
Bridging”.

[7] ANSI T1.TR.68-2001, “Enhanced Network Survivability Performance”.
[8] M. Maresca, “Metodo per l'accelerazione della riconfigurazione in reti

informatiche basate su spanning tree”, Italian Patent GE2010A000037,
April 15, 2010.

[9] J. Sommer, S. Gunreben, F. Feller, M. Kohn, A. Mifdaoui, D. Sass, J.
Scharf, “Ethernet. A survey on its fields of application”, IEEE
communications surveys and tutorials, Vol. 12, 2010.

[10] R. C. Sofia, “A Survey of Advanced Ethernet Forwarding Approaches”,
IEEE Communications Surveys & Tutorials, Vol. 11, No. 1, First Quarter
2009.

[11] M. Huynh, S. Goose, P. Mohapatra, “Resilience technologies in
Ethernet”, Computer Networks, Vol. 54, No. 1, pp. 57-78, 2010.

[12] J. Jaffe, F. Mos, “A Responsive Distributed Routing Algorithm for
Computer Networks”, IEEE Trans. on Communications, vol. 30, no. 7,
July 1982.

[13] J. J. Garcia-Lunes-Aceves. “Loop-free routing using diffusing
computations”, IEEE/ACM Trans. Netw., Vol. 1, Issue 1, February 1993.

[14] Myers, Eugene Ng, Zhang., “Rethinking the Service Model: Scaling
Ethernet to a Million Nodes”, in Proc. of Third ACM Workshop on Hot
Topics in Networks (HotNets-III), San Diego, CA, November, 2004.

[15] K. Elmeleegy, Alan L. Cox, T.S. Eugene Ng, “Understanding and
Mitigating the Effects of Count to Infinity in Ethernet Networks”,
IEEE/ACM Trans. on Netw., Vol. 17, No. 1, February 2009.

[16] R. Perlman, “Rbridges: Transparent Routing”, in Proc. of Infocom 2004.
[17] R. Garcia, J. Duato, F. Silla, “LSOM: A Link State Protocol Over Mac

Addresses for Metropolitan Backbones Using Optical Ethernet
Switches”, in Proc. of NCA 2003

[18] T. Rodeheffer, C. Thekkath, D. Anderson, “SmartBridge: A Scalable
Bridge Architecture”, in Proc. of Sigcomm 2000.

[19] K. Lui, W. Lee, K. Nahrstedt, “STAR: A Transparent Spanning Tree
Bridge Protocol with Alternate Routing”, ACM Sigcomm Computer
Communications Review, July 2002.

[20] C. Kim, M. Caesar, J. Rexford, “Floodless in SEATTLE: a scalable
ethernet architecture for large enterprises”, in Proc. of Sigcomm 2008.

[21] K. Elmeleegy, Alan L. Cox, “EtherProxy: Scaling Ethernet By
Suppressing Broadcast Traffic”, in Proc. of Infocom 2009.

[22] G. Mirjalily, M.H. Karimi, F. Adibnia, S. Rajai, “An approach to select
the best spanning tree in Metro Ethernet networks”, CIT 2008.

[23] S. Sharma, K. Gopalan, S. Nanda, T. Chiueh, “Viking: a multi-spanning-
tree Ethernet architecture for metropolitan area and cluster networks”, in
Proc. of Infocom 2004.

[24] J. Farkas, C. Antal, L. Westberg, A. Paradisi, T. R. Tronco, V. Garcia de
Oliveira, “Fast Failure Handling in Ethernet Networks”, in Proc. of ICC
2006.

[25] M. Huynh, P. Mohapatra, “Etherlay: An Overlay Enhancement for Metro
Ethernet Networks”, in Proc. of ICC 2006.

[26] M. Huynh, P. Mohapatra, “Cross-Over Spanning Trees Enhancing Metro
Ethernet Resilience and Load Balancing”, in Proc. of Broadnets 2007.

[27] A. Iwata, A., Y. Hidaka, M. Umayabashi, N. Enomoto, A. Arutaki,
“Global Open Ethernet (GOE) System and its Performance Evaluation”,
IEEE Journal on Selected Areas in Communications, Vol. 22, Issue 8,
Oct. 2004.

[28] J. Qiu, G. Mohan, K. Chaing Chua, Y. Liu, “Local restoration with
multiple spanning trees in metro Ethernet”, in Proc. of ONDM 2008.

[29] L. Su, W. Chen, H. Su, Z. Xiao, D. Jin, L. Zeng, “Ethernet Ultra Fast
Switching: A tree-based local recovery scheme”, in Proc. of ICCS 2008.

[30] A. F. De Sousa, “Improving Load Balance and Resilience of Ethernet
Carrier Networks with IEEE 802.1S Multiple Spanning Tree Protocol”,
in Proc. of ICNICONSMCL 2006.

[31] M. Huynha, P. Mohapatra, S. Goose, “Spanning tree elevation protocol:
Enhancing metro Ethernet performance and QoS”, Computer
Communications, Vol. 32, Issue 4, March 2009.

[32] J. Qiu, Y. Liu, G. Mohan, K. C. Chua, “Fast Spanning Tree
Reconnection for Resilient Metro Ethernet Networks”, in Proc. of ICC
2009.

[33] J. Qiu, G. Mohan, K. C. Chua, Y. Liu, “Handling Double-Link Failures
in Metro Ethernet Networks Using Fast Spanning Tree Reconnection”,
in Proc. of Globecom 2009.

[34] P.M.V. Nair, S.V.S. Nair, M. Marchetti, G. Chiruvolu, M. Ali,
“Bandwidth sensitive fast failure recovery scheme for Metro Ethernet”,
Computer Networks, Vol. 52, Issue 12, June 2008.

[35] P. Pan et al., “RFC 4090. Fast Reroute Extensions to RSVP-TE for LSP
Tunnels”.

[36] K.-W. Kwong, L. Gao, R. Guerin, Z.-L. Zhang, “On the Feasibility and
Efficacy of Protection Routing in IP Networks”, IEEE/ACM Trans.
Netw., Vol. 19, Issue 5, October 2010.

[37] H. Peterson, S. Sen, J. Chandrashekar, L. Gao, R. Guerin, Z.-L. Zhang,
“Message-efficient dissemination for loop-free centralized routing”,
ACM Sigcomm Computer Communications Review, Volume 38 Issue 3,
July 2008.

[38] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
I. Stoica, “Achieving convergence-free routing using failure-carrying
packets”, in Proc. of Sigcomm 2007.

[39] “IEEE 802.1ax-2008 IEEE Standard for Local and Metropolitan Area
Networks - Link Aggregation”.

[40] “RFC 3619. Extreme Networks' Ethernet Automatic Protection
Switching (EAPS). Version 1”.

[41] “ITU-T G.8032. Ethernet ring protection switching”.
[42] “RFC 5905. Network Time Protocol Version 4: Protocol and Algorithms

Specification”.
[43] IETF Transparent Interconnection of Lots of Links WG (TRILL)

‘http://tools.ietf.org/wg/trill/.

